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Abstract-Numerical simulation of the dynamics of homogeneous turbulence of a stably stratified fluid in 
the presence of a vertical constant-density gradient was carried out. The second-order model which is 
universal with respect to turbulent Reynolds and Peclet numbers and molecular Prandtl number is applied 
to the numerical simulation of the dynamics of the velocity and density field parameters up to the final 
stage of decay. At small evolution times NT, the results of similation are compared with the familiar 
experimental data. The structure of a ‘relict’ turbulence was investigated for the molecular Prandtl numbers 

corresponding to air and sea water. 

1. INTRODUCTION 

A KNOWLEDGE of the laws governing the evolution 
of the homogeneous turbulence in a stably stratified 
liquid is of great theoretical and practical interest. 
Theoretically, this interest is motivated by the possi- 
bility of a more detailed (than in the case of the general 
form of shear turbulence) study of the role of density 
gradient as a turbulence generator in an actively strati- 
fied medium. From the practical point of view, the 
homogeneous turbulence of a stably stratified fluid is 
quite a realistic model of the upper atmosphere or of 
the thermohalocline in the ocean. 

Over the past years considerable experimental 
efforts have been devoted to the elucidation of the 
fundamental aspects of the evolution of stably strati- 
fied homogeneous turbulence for both liquid (salt 
solution) and air. In the paper by Dickey and Mellor 
[l] which seems to be the first statistical-parametric 
experimental investigation of turbulence in a stably 
stratified fluid, a wavy change in the dispersion of 
vertical velocity fluctuations has been detected on the 
attainment of a certain dimensionless time Nt (here 
N = ((g/p) dp/dz) ‘/’ is the Brunt-VIisH11 frequency) 
which presumably is indicative of the transition of 
turbulent fluctuations into internal waves. Moreover, 
at this very value of Nt, a jumpwise decrease in the 
rate of kinetic energy dissipation of disturbances E, 
was detected confirming the presence of transition to 
a weakly dissipative wave field (in subsequent exper- 
iments such a behaviour of E, was not detected). The 
wave behaviour of the energy of lateral velocity fluc- 
tuations has been confirmed for the first time by Riley 
et al. [2] who numerically investigated the evolution 
of homogeneous turbulence in a stably stratified 

medium. However, in this case no jumpwise change 
in the parameter E, has been detected which is indica- 
tive of the absence of the dominating contribution of 
internal waves into the perturbed velocity field, at 
least, for the range of NT values studied. 

In more detailed (than in ref. [l]) experimental 
works of Stillinger ef al. [3] and Itsweire et al. [4], a 
great number of ‘energy’ properties of velocity and 
density fields, different characteristic length scales, 
relating to velocity and density fields and also the 
transverse turbulent density flux were studied. The 
latter parameter has turned out to be extremely impor- 
tant for interpreting the specific features associated 
with the role of gravitation in the evolution of homo- 
geneous turbulence. It has been shown that the con- 
sidered parameter falls down to zero (the so-called 
collapse of turbulence), then, as NT increases, it 
acquires negative values, i.e. the counter-gradient den- 
sity transfer is observed. When in the earlier studies it 
was assumed that the condition uZp = 0 signifies a 
complete suppression of vertical velocity fluctuation 
and transition of disturbed field to the so-called two- 
dimensional ‘fossil’ turbulence, it has been dem- 
onstrated in refs. [3, 41 that gravitation slows down 
(as compared with the case of passive stratification) 
the decay of vertical fluctuations, i.e. downstream at 
the ‘collapse’ point they remain even more substantial 
than in the absence of the effect of gravitation. It 
was shown in those works that after the point where 
u,p = 0, a wavy change in all the measured par- 
ameters was observed ; moreover a ‘discontinuity’ in 
the law of decay of the energy of vertical fluctuations 
was noted : the values of & averaged over the ampli- 
tude of ‘waves’, degenerate self-similarly after the 
collapse point, just as before it, but with a smaller 
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NOMENCLATURE 

0” absolute constant, equation (2.1) Greek symbols 

;:: 
variable coefficient,. equation (2.3) variable coefficient, equation (2. I) 

d: 
deviator of Pij tensor 2 variable coefficient, equation (2.1) 
variable coefficient, equation (2.1) YU variable coefficient, equation (2.1) 

cij deviator of D,, tensor 6” coefficient in parameter d,, 
D/j second-rank tensor, equation (2. I) A Laplace operator 
4, parameter of turbulent Reynolds number E,, rate of kinetic energy turbulence 
Fr Froude number, NM/U dissipation 
F, ‘interaction function’, equation (2.4) 6 rate of temperature fluctuation 
Ri gravity acceleration vector degradation 
K kinetic energy of vertical K molecular diffusion 

fluctuations, (1/2)p,ut 4 Taylor microscale of scale field 
Lh buoyancy scale, G/N 2 4, Taylor microscale of velocity field 
L ‘overturning’ scale, p”‘/(d&Jdx,) 

; 
kinematic viscosity 

M size of grid cell vector of distance between two points 
N . . . . Brunt-Vaisala frequency, P density fluctuations 

(WPO) WW “2 P mean density 
n,.r variable coefficient, equation (2.3) 0 molecular Prandtl number, V/K 

P potential energy of turbulence, T time 
(1/2)~o(glpo)~/(dp/d.~2) TU time scale of velocity field, g/e,, 

P pressure fluctuations Tslr time scale of density field, 7/.sI,. 
pij second-rank tensor of Reynolds stresses 

production, equation (2.1) , Subscripts 
F-1 turbulence Peclet number, ~“-A& a asymptotic value 
R 

R* 
time scale ratio parameter, r,/rL,,, s condition of strong turbulence 
turbulence Reynolds number, q2 -Au/v T relates parameter to turbulized medium 

sij second-rank tensor of mean shear t relates function to temperature field 
T BV Brunt-VaisllH period, 2n/N u relates function to velocity field 
t temperature fluctuations W condition of weak turbulence 
vi mean velocity vector. 0 absence of mean shear. 

exponent in the power law (of course, all the above 
relates to relatively large turbulent Reynolds and 
Peclet numbers that correspond to the experiments 
mentioned). 

In a more comprehensive experimental work of 
Lienhard and Van Atta [S], carried out for a tem- 
perature-stratified air, the concept of homogeneous 
turbulence of a stably stratified medium has been 
developed as an essentially two-scale process in which 
large-scale perturbations are controlled by buoyancy 
forces and the fine-scale structure by viscosity. In the 
light of this concept it has been shown that the con- 
dition u,P = 0 does not mean the disappearance of 
the active turbulent mixing but is the manifestation of 
an important trend in the stratified flow turbulence 
which was discovered in the work, i.e. that at a certain 
value of the ‘phase’ N7 the vertical mass fluxes, associ- 
ated with large and small vortices, are equal in mag- 
nitude and opposite in sign. The change in the sign of 
the mass flux (counter-gradient transfer) is associated 
exclusively with large-scale turbulent motions and 
results from restratification, i.e. the consequence of 
the motion of large vortices which were ‘thrown’ by 

turbulence from the region of high to the region of 
small density, under the action of buoyancy to the 
equilibrium and then to the region of higher density. 
As to the mass flux associated with fine vortices, it is 
down-gradient at any time instant. 

Thus, the scales at which turbulent mixing takes 
place and the scales on which the generation of inter- 
nal waves occurs and which manifests itself in the 
alternation of the mass flux sign, are greatly spaced in 
the spectrum of the scales. As to the mechanism of 
energy transfer from relatively fine-scale turbulence 
to large-scale wave motion, then it is not as yet entirely 
clear. In order to elucidate this extremely important 
problem, a number of attempts at direct numerical 
simulation of the evolution of homogeneous tur- 
bulence of a stratified fluid have been undertaken. The 
first effort has been made by Riley et al. [2]. The 
authors of that work have shown that even though 
stratification increases the decay rate of the dis- 
sipation of the kinetic energy disturbances, this par- 
ameter remains rather high for the turbulence energy 
to be regarded as fully converted into the energy of 
internal waves. Thus, it follows from that work that 
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at least in the studied range of the dimensionless time duction at the expense of the mean velocity shear; 
N7, the internal gravitation waves coexist with the 
turbulence proper as with a purely stochastic field. &ii s v(-A$$),=, = f(dUa,+6ij)e, 

A detailed numerical investigation of the stochastic 
and wave modes in the turbulence of a stratified 

is the model relation for the rate of dissipation of 

medium was carried out in a recent work of Metais 
Reynolds stresses ; E, = sii is the dissipation of tur- 

-1 
and Herring [6]. 

bulence kinetic energy; aij = 3uiuj/q -6, is the devi- 

The results obtained in the above-mentioned 
ator of the fi;tii tensor ; 

numerical studies show that the development of a 
homogeneous turbulence in a stably stratified medium 
have been studied at least for moderate turbulent 
Reynolds and Peclet numbers. In practical situations = - 41 -d”)aij&u-b,[a,q’Sij+ (Bubij +y,cij)Pk,] 
existing in the atmosphere and ocean, the conditions 
of small values of R1 and PA numbers (atmosphere) -~Bgk[2~6ij-3(uit6jk+uitsn)] 

and small R1 and moderate or even large PL (the is the model relation for the second-rank tensor of the 
thermohalocline in the ocean) are being realized. 
Therefore, when the above-mentioned numerical 

interaction of pressure fluctuations with the gradients 

works have some relevance to the atmosphere, they 
of velocity fluctuations the three constitutive parts of 

practically do not have direct bearing on the ocean, 
which model, respectively, the ‘slow’ return to the 

since the case PA >> R1 is as yet inaccessible for direct 
isotropy, ‘rapid’ deformation of turbulence by mean 

numerical simulation. Moreover, great evolution 
shear and contribution of gravitation; &= u,? is 

times at which RL --) 0 are also inaccessible as yet for 
the doubled kinetic energy of turbulence ; S, 
= 

direct numerical simulation. 
: (dU,/ax,+dU,/ax,) is the second-rank tensor of 

In the present work an attempt has been made to 
mean shear; b, = 3Pij/Pkk-6, is the deviator of the 

apply the second-order model, developed by one of 
Pij tensor ; cij = 3D,lP,,-6, is the deviator of the 

the authors [7], to the study of the dynamics of the 
D, tensor; D,= -G dUkldxj+a dU,Jdx,); 

stably stratified homogeneous turbulence in a Bous- 
/I = -(l/fi,)(dj/dT), is the thermal expansion 

sinesq fluid. In so doing the following problems were 
coefficient of the medium; a,, b,, d,, a,, flu, and yy are 

posed : 
the coefficients of the model which generally are some 
functions of governing parameters. For the homo- 

l the study of the dynamics of relatively strong tur- geneous turbulence considered these parameters are : 

bulence at different values of the general Froude the turbulent Reynolds number Rl = 2”21,/v; the 

number, Fr = NM/U; ratio of the turbulent kinetic energy production rate 

l the study of the effect of molecular Prandtl number to the rate of its dissipation p” = Pkk/2&,; the Taylor 

on the evolution (decay) of moderately strong microscale of the length I, which in the considered 

stratified turbulence ; homogeneous anisotropic turbulence is determined by 

l the study of the transition of moderately strong the relation 

stratified turbulence to a weak relict turbulence and 
the elucidation of the relative role of internal waves 

1,’ = %2/E, = 5V7”, 

and of the turbulence proper at a very large time of where 7” = ?/.su is the time scale relating to the tur- 
evolution. bulent velocity field. 

2. GOVERNING EQUATIONS, SCALES AND 2.2. An exact equation for the mean square of scalar 
PARAMETERS fluctuations 

The second-order model of homogeneous tur- 
bulence of a stably stratified Boussinesq fluid consists 3+2(1-13)E, = 0, 

of the following differential equations (the details 
relating to the allowance for gravitation in different where E, = rc(dtlaX,)2 E K(-A~N’)+~ is the rate of 

model equations are omitted). ‘smearing’ of scalar fluctuations ; p, = P,,/2-e, is the 
ratio of the rate of scalar fluctuation production due 

2.1. Model equation for the tensor of Reynolds stresses to the vector of the gradient of its mean value 

This is given by P,, = -2ti;;s aT/ax, to the rate of destruction E,. 

where 

2.3. The model equation for the scalar quantity flux 
vector 

This is given by 
Pij = - (uiuk dU,/dx, +uju, dU,/dx,) 

is the second-rank tensor of Reynolds stress pro- 
+t-Pi,+E;,-Q)i, = -/!lgiTz, 
Y. 
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where 

Pi, = - (uiuk d T/dx, + u,t d CJi/dxk) 

is the vector of turbulent flux production by the gradi- 
ents of the mean values of the velocity and scalar 
quantity, Ed, = d,l/z,,,&t is the model relationship for 
the rate of flux z ‘smearing’ 

The right-hand side of the equation considered 
simulates the effect of gravitation on the vorticity of 
velocity fluctuation field. 

The coefficient F;f*, associated with the total effect 
of vorticity destruction and stretching of isotropic 
velocity field. is modelled by the turbulent Reynolds 
number function 

= - a,,, ( 1 - d,) ; 3 + : (4d UJdx, - d U,/dxi)ui t 
“I., 

+ :Bg&Lai~ +&IF 

is the model relation for the vector of pressure with 
the gradients of a scalar interaction (the relations for 
(DiF) and a$” are exact), 

av,ru$ = [4 - F, + n,; ’ (Z/F) R - P,]r; ’ 

is the model relationship for the mixed time scale 7,,, 

for R1 >> 1, P1 >> 1, P, = const., ls, = const. ; 

7,,,! = [2(a,,., + 3/5)R/Rm.o - pu]7; ’ 

is the model relationship for the mixed time scale for 
Ri CC 1, PL c 1, pU = const., is, = const.; 

0 7ko = (3/10) &q[*-(2J’] 

is the asymptotic (for a large evolution time) turbulent 
Prandtl number for R1 CC 1, P,K 1, ls$ = const., pU --* 
0 (Deissler’s relation [S]); PI = ?“-A,/K is the tur- 
bulent Peclet number, A,? = ~K?/E, = 6~7, is the 
squared Taylor microscale of length relating to a sca- 
lar field ; 7, = F/s, is the time scale relating to a scalar 
field ; 

is the parameter of the time scales 7J7, ratio of homo- 
geneous turbulence for R, c 1, P1 << 1. p,, = 0, 
pi = const. (exact solution of Dunn and Reid A). 

2.4. A model equation for the rate of turbulent kinetic 
energy dissipation 

This is given by 

;~,+(F$*-3P.)e:,~ = -2d,Jg,- 
l- 

- u,t, 
1 + 0 7ttm. 

where 

(F:* - 3~J&,f/;;i = GEN+ DIS+ IN 

is the model relation for the sum of three effects: 
production of s, by mean shear (GEN = 0 for R1 >> 1), 
destruction of the parameter E, (or of vorticity z 
= (l/v)&,) and change in 2 by means of stretching 

(compression) of vortex filaments (see for details ref. 
[71). 

C*(&) = F:,*(l -dJ+C3,, 

where F$* = 1 l/3 and F,*,,?= 14/S are the asymptotic 
values of Fz* for Ri >> 1 and R, c 1 which are found 
analytically by the known procedure. 

The parameter d,, is the empiric function of the 
turbulent Reynolds number. In the present study it is 
specified in the form 

d,, = 1-2(l+J(l+&/Rf))-‘. 

The remaining coefficients of the model have the 
form (for details see ref. [7]) : 

b,=2{l+[(cr,JF~*-2)(1-d,) 
+ (cr,./F:,t- 2)d,lp”} - ’ , 

3’. = 2(fi 4 -+A B. = 4 4, Y. = -& 4,> 

a, N 3, a,, N 2800, a,T N 1, a,,. N 0.5. 

2.5. A model equation for the rate of ‘smearing’ of 
scalar quantityfluctuations 

D 1 1 
EE, = 2dP,,s, L +2dP, - 

7” 1 +cs,= 

- (F:, + F:2 R)E, ; 

where the first two terms on the right-hand side of the 
equation model the effect of E, production by mean 
velocity shear and by the gradient of mean value of 
the scalar quantity (in strong turbulence this effect is 
absent) ; the second two terms simulate the joint effect 
of the production of E, by deformation of vortex fila- 
ments of velocity field and associated scalar field ‘for- 
mations’ and also the destruction of parameter E, by 
molecular diffusion. 

The coefficients F:, and FF2 are modelled by the 
following functions of turbulent Reynolds and Peclet 
numbers and also of the parameters P, and P, : 
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The coefficients F:,* and FF2* model the above- 

indicated effects in the case of the velocity and scalar 
field isotropy in the form of the following functions 
of the turbulent Reynolds number 

Ff,*= F**-2-jd N 7 

Ff2*= 2+jd. 

3. DYNAMICS OF TURBULENCE IN A STABLY 
STRATIFIED FLUID 

Based on the considered second-order model, the 
present section investigates the dynamics of homo- 
geneous turbulence of a stably stratified fluid in the 
absence of mean velocity shear. It is assumed that in 
an infinite fluid volume with a constant vertical mean 
density gradient dp/dx2 = const. (the coordinate x2 is 
directed vertically, opposite to the gravity accel- 
eration) the evolution of turbulence is going on from 
the initial state corresponding to a three-dimensional 
homogeneous isotropic turbulence. 

As is known, in a stably stratified fluid disturbed 
from equilibrium fluctuations originate internal gravi- 
tational waves with the Brunt-ViisIlii frequency 

N _ “* g dP 
-( > PO dx2 ’ 

In the case of a turbulized fluid, the elements of the 
fluid with a wide spectrum of turbulent fluctuations 
become involved into disturbances of gravitational 
nature. The turbulent modes which have the fre- 
quencies commensurable with the Brunt-V&ala fre- 
quency turn out to be affected by the buoyancy forces. 
In the vertical direction the displacement of the tur- 
bulized element is estimated by the so-called over- 
turning scale 

L, = ~‘“/(d~,/dx,), 

where 2 are the mean-squared density fluctuations. 
This length scale characterises the size of large tur- 
bulent modes in the density stratified fluid. 

The ‘adjustment’ of the turbulence, developing in 
time, to the internal gravitational waves can be easily 
illustrated on the example of grid-generated turbu- 
lence. At small evolution times when turbulence is still 
virtually isotropic, the well-known relations for the 
turbulence energy and Taylor length scale are fulfilled 

z - 7- ‘, 1” - T”2. 

It can be easily seen that the Froude number (here the 
quantity is used which is reciprocal of that generally 
used because of the fact that in the absence of gravi- 
tation the value of the parameter which determines 
the effect of gravitation is equal to zero). 

Fr,. = N11,j~“2 

will evolve following the ‘law’ 

FrT - NT. 

This estimate shows that at small evolution times 
Fr, << 1, i.e. gravitation does not influence turbulence. 
For the time 7 N N- ’ the parameter Fr, attains the 
value of the order of unity, i.e. the effects of turbulence 
and buoyancy become commensurable. At these times 
of evolution, wavy-like changes of the statistical par- 
ameters of turbulence should begin. 

Experimental data obtained in recent years for the 
turbulence of stably stratified fluid [3-S], which 
evolves in the wake behind a grid. show that wavy 
downstream variation of time-average parameters is 
one of the specific features of the evolution of stably 
stratified homogeneous turbulence. As a result of the 
indicated experiments a number of conclusions have 
been drawn about both the phenomenon of transition 
from three-dimensional turbulence to a presumably 
quasi-two-dimensional turbulence plus internal gravi- 
tational waves at relatively small distances from the 
grid and interaction between turbulence and internal 
waves after the collapse. However, the question of 
whether or not gravitation causes the transition of 
three-dimensional turbulence to quasi-two-dimen- 
sional or to a gravitational wave or to a super- 
positional field of turbulence and internal waves 
remains open up to now, since this can be elucidated 
only at high evolution times which as yet are inac- 
cessible either for direct modelling of physical exper- 
iment. 

In the present work an attempt has been made 
to apply an alternative approach to direct numerical 
simulation-to apply a second-order model which 
describes the dynamics of the coupled velocity and 
density fields for studying the transition of a three- 
dimensional turbulence in a stably stratified medium, 
to the final stage of evolution with a view to elucidate 
the structure of the field at this stage : whether it is a 
two-dimensional turbulence (as is predicted in some 
theoretical works) or this is the field of internal waves 
or the superposition of turbulent and wave modes. 

In this situation, quite a reasonable question may 
arise: what is the basis for the belief about the 
adequate prediction on the basis of the proposed 
model of the behaviour of stably stratified turbulence 
at high evolution times? It can be answered with cer- 
tainty that, first, because of the satisfactory agreement 
between the predicted and experimental results for the 
case of strong turbulence in a non-stratified fluid (see 
ref. [IO]). Second, because the model matches exact 
asymptotics [9] with weak non-stratified turbulence, 
i.e. at very large evolution times and, finally, on the 
trivial account for the buoyancy effect in the differ- 
ential equations of the model. 

In what follows we shall try to interprete the 
numerical results obtained, to correlate them, when 
possible, with the experimental data of other authors; 
to investigate the degeneration of the stably stratified 
turbulence after the collapse having explained the role 
of the molecular Prandtl number; to investigate the 
character of the dynamics of stably stratified tur- 
bulence at small turbulence Reynolds and Peclet num- 
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bers, i.e. to elucidate whether or not it really tends to 
a two-dimensional state as it follows from a number 
of theoretical investigations. 

3.1. Dynamics of moderately strong turbulence of 
stably stratifiedfluid 

This section deals with the analysis of the results of 
numerical simulation for the dynamics of moderately 
strong turbulence in a stably stratified medium as 
implemented in the experiments of Itsweire et al. [4] 
for water and Lienbard and Van Atta [5] for air. 

In particular, out of the multitude of experiments 
made for water, three have been selected that cor- 
respond to different values of the Froude number 
(Fr = NM/U = 15.2 x 10e2; 6.3 x 10e2; 3.7 x lo-‘) 
with the grid cell measuring M = 3.81 x 10v2 m. Of 
the experiments with air [5], that one was selected 
which corresponded to the following parameters : 
Fr = 2.4 x lo-*, M = 5.08 x 10m2 m. 

The numerical results given below were obtained as 
the solution of the Cauchy problem for a system of 
ordinary differential equations that describe the 
ensemble averaged turbulence parameters : 3, 2, E,, 
7. sp, Uzp; for air the latter three parameters are 
replaced by the quantities 7, E, and q The initial 
conditions were borrowed from the corresponding 
experiments. 

The numerical results show that a turbulent flux of 
the scalar substance u,p (Fig. 1) which determines 
the source gravitation terms in the equations for the 
parameters z, p and sl performs oscillations near 
the position where 6 = 0, with the first crossing of 
time axis at Nr z 2.5 ; the oscillation period is assessed 

0006.. 

FIG. 1. Evolution of a transverse mass (or heat) flux. 
q = m/Uh4(-dp/dxJ. *, Fr = NIU/U = 0.037; x, Fr = 
0.063 ; +, Fr = 0.152; -, experiment for water [4] ; 0, 
Fr = 0.024 ; -, experiment for air [5j ; solid lines, numerical 

simulation. 

FIG. 2. Evolution of the kinetic energy of transverse velocity 
fluctuations, rr;/U*. For designations see Fig. 1. 

as 

Tz 3.5N-‘, 

irrespective of the Froude number value. 
-. Oscillations of the function u,p drrectly cause oscil- 

lations of lateral velocity fluctuations, 3 (see Fig. 2) 
and, via this parameter, of the kinetic energy of tur- 
bulence (Fig. 3). Less noticeable are the oscillations of 
the averaged value of horizontal velocity fluctuations, 
u: (Fig. 4) since gravitation effect for them manifests 
itself only through pressure fluctuations. 

2 

FIG. 3. Evolution of the full doubled kinetic energy of tur- 
bulence, a/U*. For designations see Fig. 1. 
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I00 IO’ I02 

NT 

FIG. 4. Evolution of the kinetic energy of longitudinal vel- 
ocity fluctuations, z/U2. For designations see Fig. 1. 

Note that the absence of vertical turbulent mass (or 
heat) transfer occurring at NT = 30 (see Fig. 5) does 
not at all mean the suppression of vertical velocity 
fluctuations, which, as follows from Fig. 2, decay with 
an averaged (over the amplitude oscillations) rate 
which does not exceed the rate of decay of the non- 
stratified fluid velocity fluctuations. 

2 The oscillations of the parameter u p show up 
directly also on the behaviour of density fluctuations 
(Fig. 5) but not through the source gravitational term 

. 

, 
lo-’ I@ IO' 

NT 

FIG. 5. Evolution of mean squared density (or temperature) 
fluctuations, 0 = ~/Mz(d+x2)*. For designations see 

Fig. 1. 

of non-gradient type (which is not naturally present 
in this equation) but through the rate of density fluc- 
tuation production by the mean density gradient 

Ppp = -2u,p dp/dx,. 

When NT < 1, the function 2 evolves in the fashion 
similar to the mean square of the passive scalar fluc- 
tuations (see, for example, ref. [lo]). At NT N 2.5, the 
decay of p2 begins which qualitatively is similar to the 
decay of the isotropic passive scalar. 

A specific feature different from the isotropic case 
is the wavy-like oscillation in density fluctuations with 
a period equal to that of the transverse density flux 
oscillations. 

As is known, the wavy-like oscillations of the tur- 
bulence parameters in a stably density-stratified 
medium indicates the presence of internal waves in 
the field excited by gravitational forces. As is known, 
the indicator of the transition of turbulence to internal 
gravitational waves is the value of the ratio of the 
kinetic energy of vertical velocity fluctuations 

~=fp,~=$,~*(i$/N2) 

to the potential energy of the density field 

or the ratio of characteristic length scales 

K L,,' -= - 
0 P L,' 

where Lb = (z/N’) ‘I2 is the buoyancy scale, L, = 
--j 112 p /(dfi/dx) is the ‘overturning’ scale or the char- 
acteristic distance along the vertical over which the 
element of a turbulized fluid may displace from the 
equilibrium position. The upper limit of the parameter 
L, is the scale L,, determined by the turbulence inertia. 

It is obvious that at small evolution times of strong 
turbulence the value of the ratio (Lb/L,) exceeds unity. 
In this case the contribution of the internal waves into 
the turbulent field is insignificant. The condition 

K 
p=l 

testifies to the ‘parity’ of turbulent velocity dis- 
turbances in the vertical direction and internal waves ; 
sometimes, this condition is considered to be the con- 
dition for the transition of turbulence to internal 
waves, assuming that finally (at very large evolution 
time) turbulence will entirely pass over into the inter- 
nal waves ; in what follows it will be shown that such 
a transition is not always possible. 

The curves presented in Fig. 6 show that in the 
region of a relatively strong turbulence (the turbulence 
Reynolds and Peclet numbers are presented in Figs. 7 
and 8, respectively) the ratio Lb/L, similarly to the 
transverse mass flux is an oscillating function attain- 
ing the asymptote. At small values of the dimen- 
sionless time, L,,/L, > 1 indicating the prevailing con- 
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NT 

FIG. 6. Evolution of the ratio of the kinetic energy of vertical 
velocity fluctuations to the potential energy, K/P = 
(?JN2)/@l/(dj3/dx2)2 = (L+./L,J2. For designations see 

Fig. 1. 

tribution of turbulence into a perturbed field. The 
condition L,/L, = 1 corresponds to the coordinate 
NT N 2. 

The minimum value of the function K/P cor- 
responds to the coordinate Ns N 2.5, i.e. to the point 
where the transverse mass flux vanishes for the first 
time. The asymptotic value which is attained by the 
ratio K/P is equal approximately to 0.7. 

Since, as was shown above, the contribution of 
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FIG. 7. Evolution of the turbulence Reynolds number, 
RA = &~“*/v. For designations see Fig. 1. 
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FIG. 8. Evolution of the turbulence Peclet number Pi = 
A,~I”‘/h-. For designations see Fig. 1. 

internal waves into the superposition field at N7 = 2 

becomes equal to that of the turbulence proper, then 
starting from this point one should await the specific 
features of the dynamics of the considered parameters 
inherent in a stratified fluid. Indeed, from the data 
given in Fig. 7, it is seen that at N7 2: 2.5 cor- 
responding to the collapse of the transverse mass flux, 
a jumpwise decrease in the rate of turbulence inertia 
decay is observed. The reason for this seems to be 
internal waves with a large period (proportional to 
the Brunt-VBisIla period, T,, = 2x/N) ; this is indi- 
cated by a jumpwise change in the increase in the 
Taylor macroscale of velocity field (Fig. 9) at 
N7 N 2.5. 

Since the internal random waves are less dissipative 
structures than turbulence, then, starting from the 
same coordinate (N7 N 2.3, a slower decay of velocity 
fluctuations is observed (see Figs. 24). 

3.2. Eflect of molecular Prandtl number 
Realizations of the experiment considered in the 

present work and the results of simulation, cor- 
responding to them, relate to a moderately strong 
turbulence of yelocity field, as indicated by the pattern 
of turbulence Reynolds number evolution (Fig. 7). At 
the same time the scalar field turbulence is moderately 
strong for air and quite strong for water (see Fig. 8). 
In view of this, it can be expected that even at almost 
the same values of the global Froude number, and 
different values of molecular Prandtl number the 
dynamics of the turbulence parameters should be 
different. As follows from the above-mentioned fig- 
ures, in the near region (N7 c 1), where the effect of 
buoyancy forces on the velocity field is negligible, the 
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FIG. 9. Evolution of the Taylor macroscale of velocity fluc- 
tuations, EU = LJM. For designations see Fig. 1. 

turbulence parameters behave similarly to the case of a 
passive scalar (see, for example, ref. [lo]) : the velocity 
field parameters evolve self-similarly and, naturally, 
independently of u ; the dynamics of the scalar field 
parameters, in particular, of the quantities ~9 and L, 
(Fig. 10) depends on the initial values of the scale 
ratio parameter 
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FIG. 10. Evolution of the Taylor macroscale of density fluc- 
tuations, &, = L,/M. For designations see Fig. 1. 

which in experiments for air and water differed from 
each other. In other words, the difference of the 
exponents in the law of the evolution of the scalar 
field turbulence parameters in the region of Nr < 1 is 
due not to the difference in the values of u, but rather 
to the initial value of the scale ratio parameter R”. 

As noted above, in the ‘collapse’ region, a ‘trough’ 
in the laws of the evolution of turbulence parameters 
occurs which is conditioned by the appearance of 
internal waves. Downstream of this ‘trough’ the par- 
ameters of the field which is the superposition of the 
turbulence itself and random internal waves, are 
evolving conditionally self-similarly, i.e. self-similarly 
for the parameters smoothed with respect to the 
amplitude of oscillations. However, the rate of self- 
similar evolution of the corresponding parameters 
differs substantially for air and water. Thus, from Fig. 
3 it follows that the exponent of decay rate averaged 
over the amplitude of turbulence kinetic energy oscil- 
lations n in the power ‘law’ 

q* N (NT)-” 

is approximately equal to 0.8 for water and to about 
1.63 for air. Such a substantial difference in the rate 
of kinetic energy decay after the collapse can be attri- 
buted, on the one hand, to a different contribution of 
random internal long waves into the superpositional 
field: the small decay rate of the parameter 4’5 for 
water indicates a great contribution into this par- 
ameter of the energy of random internal gravitational 
waves favouring the production of large-scale weakly 
dissipating structures. 

On the other hand, a relatively large rate of tur- 
bulent kinetic energy decay in air, as compared with 
water and also with the case of the non-stratified 
medium, cannot be indeed associated with the pres- 
ence of internal waves. It seems to be attributed to the 
relatively low inertia of the scalar field (the evolution 
of the turbulence Peclet number is presented in Fig. 
8). As is known, to a weaker turbulence inertia there 
corresponds a more rapid decay of it. Therefore, an 
earlier transition to the final stage is observed in air 
than in a fluid. 

Thus, the influence of the molecular Prandtl num- 
ber on the evolution of the velocity field parameters 
shows up through the inertia of the scalar field, i.e. 
turbulence Peclet number PA: the higher the value 
of this parameter the greater the contribution of the 
internal waves into the perturbed velocity field. 

From Fig. 5 it follows that the molecular Prandtl 
number exerts an influence also on the degeneration 
of the mean square of scalar pulsations. Starting from 
the value of Nr corresponding to the ‘collapse’, the 
rates of decay of the amplitude-averaged values of 
us and p* (or 7 for air) turn out to be identical for a 
given value of cr, so that the ratio of the kinetic to 
potential energy, being an oscillating function of time, 
has a constant mean value which is independent either 
of the global Froude number or of the molecular 
Prandtl number (see Fig. 6). 
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It seems that this fact (which was not covered in 
earlier relevant publications of other authors) has a 
great importance for correlating the dynamics of mod- 
erately strong homogeneous turbulence of stably 
stratified fluid. 

3.3. Transition of the stably stratifiedfluid turbulence 
to the final evolution stage 

As is known from the dynamics of the homo- 
geneous turbulence of a non-stratified fluid, and in 
compliance with the results of the present work, the 
parameters RA and PA decay at a large evolution time 
(see Figs. 7 and 8), i.e. during its evolution the tur- 
bulence of a stably stratified fluid loses its inertia and 
goes over to the final stage of degeneration or, in 
conformity with the oceanographic terminology, to 
the state of ‘fossil’ turbulence. 

Of principal importance for understanding the 
character of ‘fossil’ turbulence is the study of the 
evolution of turbulence in the transition region, i.e. at 
moderate values of RL and PL parameters. 

To carry out a comprehensive study of the evolution 
of stably stratified turbulence within this transition 
range of the parameters RA and PA, the authors ana- 
lysed the results of numerical simulation of two exper- 
imental realizations which differed by molecular 
Prandtl numbers and had almost the same global 
Froude numbers : the experiment of Itsweire et al. for 
o N 900, Fr = 3.7 x 10e2 and that of Lienhard and 
Van Atta for u = 0.73, Fr = 2.4 x lo-‘. It follows 
from the data given in Figs. 1 I and 12, that the strati- 
fied turbulence approaches the final stage at sub- 
stantially different rates : for liquid the state of mod- 
erately strong turbulence persists up to N7 N 10’ ‘, 

FIG. 11. Evolution of the turbulence Reynolds number at 
the transition and final stages. Numerical simulation for 

water (1) and air (2). For designations see Fig. 1. 

23 

FIG. 12. Evolution of turbulence Peclet number at the tran- 
sition and final stages. For designations see Fig. 1. 

while for air the final stage of decay sets in already at 
N7 ‘v 104. 

As the inertias of the velocity and scalar fields 
decrease differently in time, the turbulence energy 
(Fig. 13) also decays differently in the media 
considered. At the final stage of degeneration of q2 
for air, setting in at N7 N 104, the degeneration rate 
exponent in the power law is equal to 5/2 just as for 
non-stratified medium. For liquid, the degeneration 
rate exponent of g at the final stage, which sets in at 

10-I IO’ I@ Id IO’ I09 lo” IO” 10’5 IO lols 102’ I 
NT 

23 

FIG. 13. Evolution of total kinetic energy of turbulence at 
the transition and final stages. Numerical simulation for 

water (1) and air (2). For designations see Fig. 1. 
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FIG. 14. Evolution of density fluctuations at the transition 
and final stages. Numerical simulation for water (I) and air 

(2). For designations see Fig. I. 
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NT II IO”, has the value twice as small as that for 
air. 

The fluctuations of density (or temperature), shown 
in Fig. 14, decay in the far region qualitatively in the 
same fashion as the kinetic energy of turbulence. In 
the region of small parameters Rl and PA the decay 
rate exponents for the parameter p’;i for water and I? 
for air are nearly equal to the corresponding values 
of the decay rate index of the parameter z, 

FIG. 15. Evolution of the Taylor macroscale of velocity 
fluctuations at the transition and final stages. Numerical 
simulation for water (1) and air (2). For designations see 

Fig. I. 

NT 

FIG. 16. Evolution of the Taylor macroscale of density fluc- 
tuations at the transition and final stages. Numerical simul- 
ation for water (I) and air (2). For designations see Fig. I. 

The behaviour of the length scales of energy con- 
taining vortices, i.e. of the Taylor macroscales L,, and 
L,, is of fundamental importance for understanding 
the character of velocity and scalar fields in the far 
region. As follows from Figs. 15 and 16, the behaviour 
of the macroscales of length for air and water is 
different in principle : when for air the parameters L,, 
and L, evolve similarly to the isotropic case (or in the 
case of a homogeneous passive scalar field for the 
parameter L,), then for water the indicated parameters 
increase infinitely. This fact can be presumably 
explained by a different contribution of internal waves 
into the far field for the two cases considered: when 
N7 >> I, the effect of the internal waves on the tur- 
bulence of air is insignificant, while in liquid the inter- 
nal waves become dominant. Even though such an 
assumption has an euristic character, it is confirmed 
by the analysis of the evolution of other turbulence 
parameters. Most impressive is the evolution of the 
ratio of the kinetic energy of vertical fluctuations to 
the total kinetic energy of the velocity pulsations (Fig. 
17). As follows from the numerical results when 
N7 B 1 the vertical velocity fluctuations in air become 
suppressed earlier than is the case with longitudinal 
and lateral fluctuations, i.e. the velocity field becomes 
nearly two-dimensional. For water, the pattern is 
opposite: at large values of NT the vertical velocity 
fluctuations decay more slowly than the other two 
components, so that the parameter z/7 approaches 
unity, i.e. in the case considered the velocity field 
asymptotically approaches the ‘quasi-one-dimen- 
sional’ field. 

The above-described presumed pattern of the ‘fos- 
sil’ turbulence structure is confirmed by the analysis 
of the evolution of the ratio between the kinetic energy 
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FIG. 17. Evolution of the ratio of the kinetic energy of 
transverse velocity fluctuations to the total kinetic energy 
of turbulence at the transition and final stages. Numerical 
simulation for water (I) and air (2). For designations see 

Fig. I. 

of vertical velocity disturbances and the potential 
energy (Fig. 18). From this figure it follows that in 
the case of turbulence formation in liquid the par- 
ameter K/P asymptotically (when N7 + a) tends to 
zero (or to a certain small value). This testifies to the 
dominating role of internal waves in the superposition 
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. 

. 
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FIG. 18. Evolution of the ratio 0; the kinetic energy of 
vertical velocity fluctuations and the potential energy at the 
transition and final stages. Numerical simulation for water 

(1) and air (2). For designations see Fig. 1. 

velocity field for Nr >> 1. In the case of an air at 
NT >> 1 the parameter K/P asymptotically goes over 
from the region K/P < 1, where the contribution of 
internal waves into the superposition velocity field 
somewhat exceeds the contribution of the turbulence 
proper, to the region with the value K/P = 1 indi- 
cating parity of the energies of vertical turbulent fluc- 
tuations and internal waves. However, as the data of 
Fig. 17 indicate, the contribution of vertical per- 
turbations (both of turbulence and internal waves) 
into the three-dimensional velocity field is insig- 
nificant (turbulence tends to a two-dimensional or 
horizontal one), i.e. in Fig. 18 the information-bearing 
curve (in the sense of the analysis of the contribution 
of internal waves into the’ relict turbulence) is only 
that one which corresponds to liquid: it points to 
the dominating role of internal waves in the fossil 
turbulence of a stably stratified viscous fluid. 

Thus, the analysis of the results obtained from 
numerical modelling of turbulence evolution in stably 
stratified media shows that, depending on the molec- 
ular Prandtl number, the fossil turbulence, i.e. the 
turbulence of stably stratified media with RI -X 1 and 
PA << 1, may represent either a quasi-two-dimensional 
field with the dominating contribution of random 
two-dimensional disturbances and with a slight ‘impu- 
rity’ of internal waves (for gaseous media), or ‘quasi- 
one-dimensional’ field with the dominating con- 
tribution of vertical internal waves and insignificant 
impurity of three-dimensional turbulence (for liquid 
media). 

4. STRUCTURE OF THE TURBULENCE OF 

STABLY STRATIFIED MEDIA 

The above analysis allows one to assume that the 
perturbed field in stably stratified media is a super- 
position of the turbulence proper and of the internal 
gravitational waves, with the contribution of the inter- 
nal waves into the superpositional field being different 
depending on the molecular Prandtl number. It 
should be noted, however, that the aforegoing con- 
clusion about the contribution of internal waves into 
perturbed velocity field at NT >> 1 has a heuristic 
character, since the above-considered functions in the 
far region are represented by smooth curves without 
any signs of wavy motion either in the liquid, or in 
the gas (see Figs. 17-19). Moreover, the evolution of 
a transverse mass flux, serving as an indicator of wavy 
motion of the medium, demonstrates (see Fig. 19) the 
absence of any signs of scalar field anisotropy at all 
in the far region. 

In view of this, there arises the necessity of carrying 
out a detailed analysis of the character of change in 
the process of time evolution of the perturbed field 
parameters within short intervals of the argument Nz. 
This might confirm the existence of internal waves 
and would allow one to elucidate their contribution 
to the perturbed velocity and density fields. 
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FIG. 19. Evolution of the transverse mass (or heat) flux CJ at 
the transition and final stages. For designations see Fig. 1. 

In accordance with the data considered in the pre- 
vious sections, when NZ < 1, the stably stratified 
medium turbulence parameters evolve qualitatively in 
the same manner as in the case of independent velocity 
and scalar fields. When Nr N 2.5-3.0, there occurs a 
conventional collapse of turbulence which is mani- 
fested by a vanishing transverse mass flux and which 
points to the formation of internal gravitational 
waves. 

FIG. 20. Evolution of the transverse mass (or heat) flux 
4 = ii,p/r/M(-dfi/dx,) at the beginning of the transition 

stage: (a) water, (NT), = 10.0; (b) air, (NT), = 10.0 

Due to the coupling of the velocity and density 
fields in a stratified medium, the presence of internal 
waves in the superposition field must show up in the 
evolution of all the turbulence parameters relating to 
both velocity and density fields. In fact, as follows 
from the curves presented in Fig. 20, it is already at 
the early stage of the evolution of a stably stratified 
turbulence, including even the region before the col- 
lapse, that wavy-like oscillations in the turbulence 
parameters become observable, as well as the oscil- 
lations of the function q about the zero value. The 
period of such oscillation at the initial stage of evol- 
ution is independent of the molecular Prandtl number 
and is approximately equal to 

T 1: O.S6T,,. 

A distinctive feature of the development of tur- 
bulence in a stably stratified liquid in the initial period 
is the countergradient vertical mass flux. In fact, as 
follows from Fig. 21(a), the averaged (over a number 
of ‘periods’) value of the parameter q is negative. In 
this very region of the dimensionless time Nr the 
considered parameter for the gas is on average equal 
to zero. 

In the transition region determined by the moderate 
Reynolds and Peclet numbers and extending over the 
intervals 10’“-1020 for liquid and lo’--10” for air (see 
Fig. 18), the tendency in the development of the par- 
ameter q (see Fig. 21) is preserved, i.e. the coun- 
tergradient transverse mass flux is observed for liquid 
and, on the average, zero heat flux for air. 

At the final stage of evolution determined by small 
values of the turbulent Reynolds and Peclet numbers 

FIG. 21. Evolution of a transverse turbulent mass flux in 
the transition stage: (a) water, (NT), = 1014; (b) air, 

(NT), = 105. 
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FIG. 22. Evolution of the transverse density (or heat) flux at 
the final stage: (a) water, (NT)~ = 10”; (b) air, (NT), = 10i4. 

and extending over the region N7 > 10” liquid and 
N7 > IO’* for air, the wavy character of the evolution 
of the transverse turbulent mass or heat flux is pre- 
served (see Fig. 22). Nevertheless, the qualitative 
difference of the evolution of this function in the stage 
considered, in contrast to the previous stage, consists 
in the absence, on average, of turbulent mass flux 
for liquid and in the recovery of the downgradient 
heat flux for air. The period of fluctuations of the 
function q(N7) for water somewhat increased 

T ‘y O.lT,, 

whereas for air it virtually did not change. 
Thus, both in the transition region and in the final 

stage of the evolution of density-stratified turbulence, 
gravitation plays an important role in the formation 
of a perturbed velocity field : 

l at large molecular Prandtl numbers characteristic 
for liquid media the internal waves play the domi- 
nating role in vertical perturbations of the vel- 
ocity field ; decaying more slowly than turbulent 
velocity fluctuations (due to the smaller dis- 
sipative nature of large scale structures of wave 
character), the internal waves lead to the for- 
mation of a ‘quasi-one-dimensional’ field with 
NT --f co in which the intensity of vertical per- 
turbations due to internal waves exceeds the 
intensity of longitudinal fluctuations by about an 
order of magnitude ; 

l at molecular Prandtl numbers of the order of 
unity characteristic for gases, the internal waves 

do not play the dominating role in the super- 
position velocity field; the buoyancy effect is 
reduced to the suppression of vertical velocity 
perturbations (both of internal waves and pro- 
per turbulent fluctuations) so that with N7 + co 
the velocity field represents a quasi-two-dimen- 
sional (horizontal turbulence) with an insig- 
nificant ‘impurity’ of internal waves. 

5. CONCLUSION 

In the present paper the results are presented of 
modelling the evolution of homogeneous turbulence 
in stably stratified media at any distances from an 
arbitrary origin, for example a grid being a generator 
of the turbulent isotropic velocity field. The source of 
the scalar field turbulence is a constant transverse 
mean density (or temperature) gradient which 
generates scalar quantity perturbations. The joint 
correlation of the transverse (in the direction of the 
averaged density gradient) velocity and density 
fluctuations or a turbulent transverse mass (heat) flux, 
which is a source term in the equations for turbulent 
stresses essentially determines the specific features of 
the evolution of turbulence of a stably stratified fluid. 

5.1. Specificfeatures of the evolution of stably stratified 
turbulence in the initial period 

1. The fundamental aspect of the evolution of the 
considered homogeneous turbulence is a wavy-like -. 
alternating variation of the joint correlation u,p, I.e. 
the alteration in time of the ‘down-gradient’ and 
‘countergradient’ mass (or heat) fluxes with the period 
TN 3.5N-’ N OST,,independent oftheFroudenum- 
ber. The results of the simulation carried out in the 
present work show that this feature is typical of flows 
with any, including small, Brunt-VBisHlH frequencies. 
However, the amplitude of fluctuations of the above- 
mentioned function decreases with the Froude num- 
ber Fr = NM/U. Thus, when considering the exper- 
imental confirmation of this feature, one should bear 
in mind that at small Froude numbers the amplitude 
of the oscillations of the parameter u2p can be rather 
small and located within the accuracy range of 
measurement which makes it impossible to reveal the 
presence of fluctuations directly from the experiment. 
This situation seems to be typical for some realizations 
corresponding to small Froude numbers, of the exper- 
iments of Lienhard and Van Atta [5] and also of Yoon 
and Warhaft. [ 1 l] in which the changing of the sign of 
the parameter u2p is not evident. 

2. The sign of the dimensionless transverse mass 
flux averaged over a large interval of N7 depends 
on the contribution of the internal waves into the 
perturbed field: with the internal waves playing an 
insignificant role a down-gradient turbulent transport 
prevails; in the case of a substantial contribution of 
the internal waves the countergradient transport pre- 
vails (the sign of the turbulent mass flux is identical 
with that of the mean density gradient). 
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3. In the region considered, due to the wave-like 
oscillations of the transverse mass flux, all the ensem- 
ble averaged parameters of turbulence of both the 
velocity and scalar field evolve in a wavy manner with 
the same period as that of the function u,p. In this 
case the value uZp = 0, repeating with the above-men- 
tioned period, does not at all mean the suppression 
of the vertical velocity perturbations. Moreover, a 
substantial contribution of internal waves, as evi- 
denced by wavy oscillations in turbulence parameters, 
leads to a slower decay of the kinetic energy of velocity 
fluctuations than in the case of passive scalar. This is 
quite natural, since the superposition field with inter- 
nal waves is less dissipative (of larger scale) than a 
purely turbulent velocity field. 

4. The confirmation of the substantial contribution 
of internal waves into the superpositional field is a 
jumpwise change in the increasing Taylor macroscales 
of velocity and scalar fields starting from Nz N 2.5, 
i.e. from the instant when the transverse mass flux 
starts to perform alternating oscillations. 

5. The differences in the molecular Prandtl num- 
bers typical of the experiments in different media (air 
and liquid) lead to substantially differing turbulence 
Peclet numbers. This explains the difference in the 
rate of evolution of turbulence parameters in various 
experiments conducted with different media. 

6. The amplitude-averaged value of the ratio 
between the kinetic energy of transverse velocity fluc- 
tuations and the potential energy of the density field 
in a strong turbulence is a universal constant inde- 
pendent either of the Froude number, or of the molec- 
ular Prandtl number and is approximately equal to 
0.65. 

5.2. Specific features of density-stratified turbulence in 
transition to thefinal stage 

1. The transition zone is characterized by a sub- 
stantial non-self-similarity of the evolution of tur- 
bulence parameters. 

2. The extension of the transition region depends 
greatly on the molecular Prandtl number : the larger 
it is, the higher the value of Q. One fails to relate this 
fact only to a relatively greater inertia of turbulence in 
liquid ; here the dominating role is played by internal 
waves, the contribution of which into the super- 
positional perturbed field in liquids is more substantial 
than in gases. 

3. In the region considered the macroscales of the 
turbulence of velocity and density fields evolve diff- 
erently for the two media considered: for air these 
are the functions with the maximum in the region of 
moderate values of the parameters RA and P,, just as 
in the case of a passive scalar; for a liquid these are 
infinitely increasing functions with respect to Nr. This 
fact is an indirect confirmation of the different con- 
tribution of internal waves into the superposition per- 
turbed field in the far region for liquids and gases : in a 
stably stratified gas the contribution of internal waves 
into the perturbed field is insignificant; at the same 

time, long internal waves in the perturbed far field of 
a stably stratified liquid are dominating. 

4. The previous statement is supported by a num- 
ber of factors which, in particular, include the rate of 
turbulent energy decay in a gas (Fig. 13) the exponent 
of which in the power law is equal to (-5/2). For 
liquid it is twice as small thus indicating the domi- 
nating role of larger, i.e. less dissipative, structures in 
a perturbed field formed in a stably stratified liquid. 

5. A fundamentally important feature of the evol- 
ution of stably stratified turbulence in various media 
is manifested in the ratio of the kinetic energy of 
transverse fluctuations to the total kinetic energy of 
velocity perturbations (see Fig. 17): for liquid this 
parameter tends to a value close to unity; for air, to 
zero. This means that the ‘fossil’ turbulence in liquid 
is formed in the main by internal waves, while in air 
by a two-dimensional (horizontal) turbulence. 

6. The evidence of the dominating contribution of 
internal waves into the superposition velocity field in 
liquid at a high evolution time is the fact that the ratio 
of the kinetic energy of transverse velocity fluctuations 
to the potential energy tends to a certain value smaller 
than unity. 

7. The qualitative difference between the perturbed 
velocity fields in liquid and gas at large evolution times 
consists in the fact that the ‘fossil’ (or ‘relict’) 
turbulence (i.e. the turbulence of stably stratified media 
at R1 K 1 and P, << 1) represents either quasi-two- 
dimensional random velocity perturbations (for gas- 
eous media), or a quasi-one-dimensional velocity field 
caused by the dominating contribution of vertical 
internal waves. 

5.3. The structure of turbulence of stably stratified 
media 

1. The oscillation change in time of the parameters 
of turbulence is the specific feature of its evolution in 
a stably stratified medium even at an early stage of its 

2 development up to the time when the parameter u p 
converts into zero for the first time. 

2. At the initial stage of turbulence development 
the sign of the transverse mass flux, averaged over 
some number of the fluctuation periods, depends on 
the molecular Prandtl number : countergradient mass 
transfer prevails in liquid, whereas in gas there is 
virtually no transverse mass flux. 

3. The period of the oscillations of functions in 
the initial stage of evolution is independent of the 
molecular Prandtl number and is approximately equal 
to 

TN 0.56T,,. 

4. In the transition region the character of change 
in time of turbulence parameters is qualitatively simi- 
lar to the evolution of turbulence in the initial period. 

5. At the final stage of turbulence evolution, the 
wavy character of the turbulence parameters of the 
velocity and scalar fields is preserved. However, the 
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